

LA-UR-17-30696

Approved for public release; distribution is unlimited.

Title:	Nuclear Forensics and Radiochemistry: Reaction Networks
Author(s):	Rundberg, Robert S.
Intended for:	Lecture Series at UC Berkeley

lssued: 2017-11-22

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. viewpoint of a publication or guarantee its technical correctness.

Nuclear Forensics and Radiochemistry: Reaction Networks Robert S. Rundberg

Abstract:

In the intense neutron flux of a nuclear explosion the production of isotopes may occur through successive neutron induced reactions. The pathway to these isotopes illustrates both the complexity of the problem and the need for high quality nuclear data. The growth and decay of radioactive isotopes can follow a similarly complex network. The Bateman equation will be described and modified to apply to the transmutation of isotopes in a high flux reactor. A alternative model of growth and decay, the GD code, that can be applied to fission products will also be described.

Nuclear Forensics and Radiochemistry: Reaction Networks

Lecture 5

Reaction Networks

- A nuclear explosion produces an enormous flux of neutrons.
 - A neutron yield on the order of a mole (6.02E23).
 - The chain reaction is finished in a short time, of the order of tens of nano-seconds.
 - The volume of burning fuel is relatively small.
- Multiple successive neutron induced reactions can occur.
- Activation of materials by successive reactions are prominent near the fuel.

Neutron Reactions with Actinides (Uranium)

	Cm235	Cm236	Cm237	Cm238	C 220/7/->	0-240	0	0.040	0	0.044
	CIII235			2.4 h	Cm239 ^(7/-) ~3 h	Cm240	Cm241 1/+ 32.8 d	Cm242 162.8 d	Cm243 5/+ 29.1 a	Cm244 18.1 a
96		α? ε?	ε?	ε α 6.52	ε γ 187,…	α 6.291, 6.248,… γ 44.6 ω	ε, γ 471.8,… α 5.939 (ω),	α 6.1127, 6.0694,… γ 44.1 ω (e),…	α 5.785, 5.742,… γ 277.6, 228.2,…	α 5.8048, 5.7627,
					, 107,	SF vw	5.929, 5.884,	SF $\nu\omega$ σ_{γ} 2E1, 12E1 $\partial_{f} < 5$	SF νω σ _V 13E1, 22E1	SF <i>νω</i> σ _ν 15, ~65E1
	E 3.3	E 1.7 236.0514	E 2.7	E 1.0 238.05302	E 1.8	240.055519	γ 145.6D (ω),··· Ε .767	∂f < 5 242.058829	of 61E1, 16E2 243.061382	σf 1.0, 11 244.062746
	Am234 2.3 m	Am235	Am236	Am237 ^{5/ (-)} 1.22 h	Am238 1+ 1.63 h	Am239(5/)-	Am240(3-) 2.12 d	Am241 5/- 432.7 a α 5.4857, 5.4430,	⁵⁻ Am242 1- 141 a 16.02 h	Am243 5 7.37E3 a
95	ε α 6.46 ?	8?	8	ε γ 280.2,… α 6.04 ω	$ \substack{ $	ε γ 277.6, 228.2,… α 5.774 (ω), 5.734,… γ 49.3 ω	ε γ 987.7, 888.8,… α 5.378 νω,…	α 5.4857, 5.4430, γ 59.5, 26.3–955 SF $\nu\omega$ σ_{γ} (5E1+55E1), (19E1+13E2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	α 5.276, 5.234,- γ 74.7, 31.1-662 2 SF νω σ _γ (74+4), (17E2+11E1)
	E 4.2	E 2.6	E 3.3	E 1.5	α 5.94 νω Ε 2.3	E .803	E 1.38	оf 3.2, 14 241.056823 🕥		of ~0.074, 0.06 243.061373
	Pu233 20.9 m	Pu234 8.8 h	Pu235(5/+) 25.3 m	Pu236 2.87 a	Pu237 7/- 45.2 d	Pu238 87.7 a	87.7 a 2.410E4 a		Pu241 5/+ 14.4 a	Pu242 3.75E5 a
94	ε γ 235.3, 534.7,…	ε α 6.200, 6.149,··	3	<i>α</i> 5.7675, 5.7209,···	ε, γ 59.5,…	α 5.4992, 5.4565,… 43.5 ω (e), 99.9 (e),…	α 5.156, 5.144, 5.105,… γ 51.6 e , 30.1=1057.3ω	6.56E3 a α 5.1683, 5.1237, γ 45.2ω (e ⁻), 104.2(e ⁻),	$\beta^{-}.0208$ α 4.897 ω , 4.853, γ 148.6 (v ω), 103.7,	3.75E5 a α 4.901, 4.856. γ 44.9 ω (e-)
•+•	α 6.30 ω Ε 2.1	E .39	²³⁴ U(n,2n	•		54E1, 20E1 18, ~33 238.049553 Ο	SF 1700 σ_{γ} 271, 20E1 σ_{f} 750, 30E1 $\sigma_{\alpha} < 0.4 \text{ mb}$ 239.052157	SF νω σ _γ 290, 81E2 σf 0.05, 2.4	$\sigma_{\gamma} \sim 361, 16E1$ $\sigma_{f} = 101E1, 57E1$ $\sigma_{\alpha} < 0.2 \text{ mb}$ E .0208	SF $v\omega$ σ_{γ} 19, 11E2 $\sigma_{f} < 0.2, 0.23$ 242,058737
	Np232(4+)	Np233(5	Threshold	d 6.9 Me'	V eV	Np237 5/+	Np238 2+	Np239 5/+	1 (+) Np240 (5+)	
~~	14.7 m	36.2 m	0.4 barn	@1/I M_	v eV	2.14E6 a	2.117 d β ⁻ .263, 1.248,···	2.355 d β ⁻ .438341	7.22 m 1.032 h	13.9 m
93	γ 326.8, 819.2, 866.8, 864.3.···	γ 312.0, 298.9, 546.5,···	y 1558.7, 1527.2,	5.004,	y 042.3, p	4.788, 4.771,··· 29.4, 86.5,···	<i>γ</i> 984.5, 1028.5,···	γ 106.1, 277.6, 228.2,…	$\begin{array}{c cccc} \beta^{-} 2.18, & \beta^{-} .89 \\ 1.60, \cdots & \gamma 566.3, \\ \gamma 554.6, & 973.9. \end{array}$	β ⁻ 1.3,··· γ 174.9, 133.0(e-
	E 2.8	α 5.53 ? ω Ε 1.0	1602.2, ôf 9E2 E 1.81	γ 25.6–188.8 νω σ _γ (15E1+?) Ε.124	687.6, of 2.5E3, 	σ_{γ} 15E1, 65E1 $\sigma_{\rm f}$ 0.02, 7 237.04 57	σf 21E2, 9E2 E 1.292	$\hat{\sigma}_{\gamma}$ (3E1+3E1) $\hat{\sigma}_{f} < 1$ E .722	597.4, 600.6 IT E 2.20	518.8,··· E 1.3
	U231 (5/)	U232	U233 📎	U23	1/+ U23. 7/-	U236	U2. 1/+	U238	U239 5/+	U240
92	4.2 d ε	69.8 a α 5.3203, 5.2635,…	1.592E5 a α 4.824, 4.783,	UII 0.00 5 2.46E5 a (4.776, 4.725,	26 m A.U. IT ~76.8 eV 0.720	2.342E7 a	6.75 α β ⁻ .24, .25,···	UI 99.2745 4.47E9 a	23.47 m β- 1.21, 1.28,····	14.1 h β ⁻ .36
92	γ 25.65, 84.2,… α 5.456 ω,… γ 68.33, 53.23,… ∂f 3E2	129.1, SF 32.E							γ 74.7, 43.5, $\hat{\sigma}_{\gamma}$ 22 σ_{f} 15	γ 44.1 (e-),
	E .382	232.037146	133.39983 O	<mark>n @ 2</mark> 3	barn @1	keV 39	barn 101	ke 38.050783	E 1.263	E .39

Neutron Reactions with Actinides (Uranium)

Neutron Reactions with Actinides (Plutonium)

Neutron Reactions with the Actinides (Americium)

					^{2/1} • · · · · · · · · · · · · · · · · · ·						
	Cm235	Cm236	Cm237	Cm238		n beta de		© 1 ke\⁄	Cm244		
96		α? ε?	8?	ε α 6.52	$_{\gamma 187}^{\varepsilon}$ to ²⁴²	Cm	-	@ 1 MeV	۶V	α 5.8048, 5.7627,	
	E 3.3	E 1.7 236.0514	E 2.7	E 1.0 238.05302	E 1.8	240.055519	γ 145.0D (ω), Ε .767	of < 5 242.058829	of 61E1, 2 243.00 982	σ _γ 15, ~65E1 σf 1.0, 11 244.062746	
+	Am234 2.3 m	Am235	Am236	Am2375/(-) 1.22 h	Am238 1+ 1.63 h	Am239(5/)-	Am240	Am241 5/- 432.7 a	5- Am24 2 141 a 16.02 h	Am243 5 7.37E3 a	
95	ε α 6.46 ?	8?	8	ε γ 280.2,… α 6.04 ω	γ 962.8, 9 ⁴ 0	ε γ 277.6, 228.2,…	ε γ 987.7, 888.8,…	α 5.4857, 5.4430,··· γ 59.5, 26.3-955	IT 48.6, e ⁻ $β^63, .67$ 5.207ω, $γ$ 42.2, e ⁻ 9.2ω, ε, γ 44.5,	α 5.276, 5.234,	
	E 4.2	E 2.6	E 3.3	E 1.5	^{561.0,…} α 5.94 νω Ε 2 0.3	percent	²⁴¹ Pu	+55E1), +13E2) 4 1.056823 ô	$\begin{array}{c} s_{f} \\ \sigma_{f} \\ 2E2 \\ \sigma_{f} \\ 70E2, \\ 18E2 \end{array} = \begin{array}{c} e^{-} \\ \sigma_{f} \\ 21E2 \\ E^{-}.665 \\ E^{+}.751 \end{array}$	σ _γ (74+4), (17E2+11E1) σf ~0.074, 0.06 243.061373	
	Pu233 20.9 m	Pu234 8.8 h		Pu236 2.87 a	45.3	a decay	to ²⁴¹ AM	u240 .56Ε3 a α 5.1683, 5.1237,	Pu241 5/+ 14.4 a	Pu242 3.75E5 a	
94	ε γ 235.3, 534.7,… α 6.30 ω	ε α 6.200, 6.149,…	ε γ 49.2, 756.4,… α 5.85 ω	α 5.7675, 5.7209,… γ 47.6-643.7 ω SF ννω σf 16Ε1, 1Ε3	ε, γ 59.5, α 5.344(ω), γ 280.4(νω), 289.9, 320.8, σt 24E2	α 5.4992, 5.4565, γ 43.5 ω (e ⁻), 99.9 (e ⁻), SF νω α _γ 54E1, 20E1 - 19 - 22	α 5.156, 5.144, 5.105,… γ 51.6 e=, 30.1=1057.3ω SF ννω σ _γ 271, 20E1 σ _f 750, 30E1	α 5.1683, 5.1237, γ 45.2ω (e ⁻), 104.2(e ⁻), SF νω σ _γ 290, 81E2 σ _f 0.05, 2.4	$ \begin{array}{l} \beta^0208 \\ \alpha \ 4.897 \ \omega, 4.853, \cdots \\ \gamma \ 148.6 \ (\nu\omega), \ 103.7, \cdots \\ \sigma_{\gamma} \ -361, \ 16E1 \\ \sigma_{\rm f} \ 101E1, \ 57E1 \end{array} $	3.75E5 a α 4.901, 4.856 γ 44.9 ω (e-) SF νω σ _γ 19, 11E2 of < 0.2, 0.23	
	E 2.1 Np232(4 +)	E .39 Np233(5/+)	E 1.14 Np234(0+)	236.046048 Np235 5/+	E.22	of 18, ~33 238.049553 O Np237 5/+	^{σα < 0,4 mb} 239.052157 Ο Np238 2+	Np239 5/ +	σ _α < 0.2 mb E .0208 1 (+) Np240 (5 +)	242.058737	
93	14.7 m ε γ 326.8, 819.2, 866.8, 864.3,…	36.2 m ε γ 312.0, 298.9, 546.5, α 5.53 ? ω	4.4 d ε β ⁺ .79 ω γ 1558.7, 1527.2, 1602.2, ∂ _f 9E2	$\begin{array}{c} 1.085 \text{ a} \\ \varepsilon \\ \alpha 5.021 (\nu \omega), \\ 5.004, \cdots \\ \gamma 25.6-188.8 \nu \omega \\ \sigma_{\gamma} (15E1+?) \end{array}$	$\begin{array}{c} \textbf{22.5 h} \\ \varepsilon, \beta^- \\ 54, \cdots \\ \gamma \ 642.3, \\ 687.6, \\ 0 \ 7 \ 525.3, \ 10 \ 525.3,$	2.14E6 a α 4.788, 4.771, γ 29.4, 86.5, σ _γ 15Ε1, 65Ε1 σ _f 0.02, 7	2.117 d β ⁻ .263, 1.248,… γ 984.5, 1028.5,…	2.355 d β^- .438,.341, γ 106.1, 277.6, 228.2, $\hat{\sigma}_{12}$ (3E1+3E1)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Np241 ⁵ 13.9 m β ⁻ 1.3,··· γ 174.9, 133.0(e- 518.8,···	
	E 2.8	E 1.0 U232	E 1.81	E.124 U234	of 2.7E3, 7E2 E+ 0.9 E- 0.5 1/+ U235 7/-	237.048167 🛇		^{δf} < 1 _{E.722} U238	IT E 2.20 U239 5/+	E 1.3	
92	4.2 d ε γ 25.65, 84.2,…	69.8 a α 5.3203, 5.2635,… γ 57.8 ω (e),	1.592E5 a α 4.824, 4.783,… γ 42.5 ω, 97.1, 54.7,…	UII 0.0055 2.46E5 a α 4.776, 4.725,···	26 m IT ~76.8 eV (ω), e ⁻ 0.7200 7.04E8 a	U236 2.342Ε7 a α 4.494, 4.445,	U237 1/+ 6.75 d β ⁻ .24,.25,··· γ 59.5, 208.0,···	UI 99.2745 4.47E9 a α 4.197, 4.147,…	23.47 m β ⁻ 1.21, 1.28,···	U240 ^{14.1 h} β ³⁶	
	α 5.456 ω,… γ 68.33, 53.23,… ∂f 3E2	129.1, SF ω σ _y 73, 28E1 σ f 75, 38E1	SF $νω$ $σ_γ$ 46, 14E1 σ_f 531, 76E1 $\overline{\sigma}_{\alpha}$ < 0.3 mb	γ 53.2 (e), 120.9, SF νω σ _γ 100, 7E2 σ _f < 5 mb, 7	α 4.398, 4.366, γ 185.72, 143.76, SF νω αγ 99, 14E1 σf 585, ~275	γ 49.4 ω (e), 112.8, SF νω σ _γ 5.1, 36E1 σf 0.04, 4	σ_{γ} 4E2, 12E2 $\sigma_{\rm f}$ < 0.35	γ 49.6 ω (e), SF $νω$ $σ_γ 2.68, 277$ $σ_f \sim 5μb 1.3mb$	γ 74.7, 43.5, $\hat{\sigma}_{\gamma}$ 22 σ_{f} 15	γ 44.1 (e-),···	
	E .382	232.037146 Ô	233.039628	234.040946 🛇	$\frac{\sigma_1}{\sigma_{\alpha}}$ < .1 mb 235.043923	236.045562 🕅	E .519	^δ _α ^{1μb} 238.050783	E 1.263	E .39	

Actinide Isotopes in Nuclear Debris

- The equations for the successive reactions are solved numerically in a code using the Runga-Kutta method.
- The isotopes produced give the neutron fluence and spectrum that the original material was exposed to.

The Advantage of Isotope Ratios

If we assume no burnup the first order equation is

$$\frac{dN_{A-1}}{dt} = \sigma_1 N_A \phi. \tag{1}$$

Assume constant flux, the solution is

$$N_{A-1} = \sigma_1 N_A \phi t. \tag{2}$$

The second order reaction is then

$$\frac{dN_{A-2}}{dt} = \sigma_2 \left[\sigma_1 N_A \phi t\right] \phi. \tag{3}$$

The solution is

$$N_{A-2} = \sigma_1 \sigma_2 N_A \int_0^t \phi^2 t dt$$
$$= \frac{\sigma_1 \sigma_2 N_A (\phi t)^2}{2}.$$
(4)

Therefore the atom ratio is

$$\frac{N_{A-2}}{N_{A-1}} = \frac{\sigma_2}{2}\phi t.$$
 (5)

Growth and Decay

- The growth and decay of radioactive isotopes are similar to the transmutation of isotopes in high flux environment.
- The Bateman equations are useful. But restricted to specific initial conditions.
- The Bateman equations can be modified to include transmutation.

²³⁸U Natural Decay Series

Peucker-Ehrenbrink, 2012

²³²Th-series

Peucker-Ehrenbrink, 2012

Bateman Equations

Start with a simple parent/daughter growth and decay. The equation for the daughter is,

$$\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2$$

or

$$\frac{dN_2}{dt} + \lambda_2 N_2 - \lambda_1 N_1^0 e^{-\lambda_1} = 0.$$
 (1)

The solution of this linear differential equation of the first order may be obtained by standard methods and gives

$$N_{2} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{1}^{0} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right) + N_{2}^{0} e^{-\lambda_{2}t}.$$
 (2)

Bateman Equations

Consider the grandaughter. The equation for its growth and decay is,

$$\frac{dN_3}{dt} = \lambda_2 N_2 - \lambda_3 N_3. \tag{3}$$

Eq. 3 is analyous to Eq. 1, but the solution calls for more labor, because N_2 is a much more complicated function than N_1 . The great grandaughter is even more complicated. Fortunately, H. Bateman has given the solution for a chain of n members with the special assumption that at t = 0 the parent substance alone is present, that is, $N_2^0 = N_3^0 = \cdots = N_n^0 = 0$. This solution is

$$N_n = C_1 e^{-\lambda_1 t} + C_2 e^{-\lambda_2 t} + \dots + C_n e^{-\lambda_n t},$$

$$C_1 = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1) \cdots (\lambda_n - \lambda_1)} N_1^0,$$

$$C_2 = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{(\lambda_1 - \lambda_2)(\lambda_3 - \lambda_2) \cdots (\lambda_n - \lambda_2)} N_1^0, \text{ and so on.}$$

(4)

Bateman Applied to Transmutation

Successive neutron reactions in a high flux, such as, a high flux reactor can be solved using the Bateman equations, as well. The rate of disappearence of an isotope in a neutron flux is

$$-\frac{dN}{dt} = (\lambda + n\nu\sigma)N = \Lambda N.$$
(5)

Consider a parent daughter pair. The parent disappears by both transmutation and decay. But the daughter grows by decay of the parent only and disappears by both processes. In general notation,

$$\frac{dN_{i+1}}{dt} = \lambda_i N_i - \Lambda_{i+1} N_{i+1}.$$

We replace λ_i by a modified decay constant $\Lambda_i^* = \lambda_i^* + n\nu\sigma_i^*$, were only the decay constant of transmution term that lead to next progeny in the chain is used.

Bateman Applied to Transmutation

With this nomenclature the Bateman equation becomes,

$$N_{n} = C_{1}e^{-\Lambda_{1}t} + C_{2}e^{-\Lambda_{2}t} + \cdots + C_{n}e^{-\Lambda_{n}t},$$

$$C_{1} = \frac{\Lambda_{1}^{*}\Lambda_{2}^{*}\cdots\Lambda_{n-1}^{*}}{(\Lambda_{2} - \Lambda_{1})(\Lambda_{3} - \Lambda_{1})\cdots(\Lambda_{n} - \Lambda_{1})}N_{1}^{0},$$

$$C_{2} = \frac{\Lambda_{1}^{*}\Lambda_{2}^{*}\cdots\Lambda_{n-1}^{*}}{(\Lambda_{1} - \Lambda_{2})(\Lambda_{3} - \Lambda_{2})\cdots(\Lambda_{n} - \Lambda_{2})}N_{1}^{0}, \text{ and so on.}$$
(6)

An Example

As an illustration, we compute the amount of 3.15-d ¹⁹⁹Au formed by two successive (n, γ) reactions when 1 g ¹⁹⁷Au is exposed for 30 h in a neutron flux of 1×10^{14} cm⁻² s⁻¹. The chain of reactions is

$$^{197}Au \xrightarrow{\sigma=99b}{n, \gamma} \stackrel{198}{\longrightarrow} Au \xrightarrow{\sigma=2.5 \times 10^{4}b}{n, \gamma} \stackrel{199}{\longrightarrow} Au$$

$$^{\beta^{-}}\downarrow^{t_{1/2}=2.70 \text{ d}} \stackrel{\beta^{-}}{\longrightarrow} \stackrel{t_{1/2}=3.14 \text{ d}}{\beta^{-}}\downarrow^{t_{1/2}=3.14 \text{ d}}$$

We use (5-12) for this three-membered chain:

$$N_{199} = \Lambda_{197}^* \Lambda_{198}^* N_{197}^0 \left[\frac{e^{-\Lambda_{197}t}}{(\Lambda_{198} - \Lambda_{197})(\Lambda_{199} - \Lambda_{197})} + \frac{e^{-\Lambda_{198}t}}{(\Lambda_{197} - \Lambda_{198})(\Lambda_{199} - \Lambda_{198})} + \frac{e^{-\Lambda_{199}t}}{(\Lambda_{197} - \Lambda_{199})(\Lambda_{198} - \Lambda_{199})} \right].$$

The numerical values to be substituted are

$$t = 1.08 \times 10^{5} \text{ s},$$

$$nv = 10^{14} \text{ cm}^{-2} \text{ s}^{-1},$$

$$\sigma_{197} = 9.9 \times 10^{-23} \text{ cm}^{2},$$

$$\sigma_{198} = 2.5 \times 10^{-20} \text{ cm}^{2},$$

$$N_{197}^{0} = \frac{6.02 \times 10^{23}}{197} = 3.05 \times 10^{21},$$

$$\Lambda_{197}^{*} = \Lambda_{197} = nv\sigma_{197} = 9.9 \times 10^{-9} \text{ s}^{-1},$$

$$\Lambda_{198} = \lambda_{198} + nv\sigma_{198} = 3.0 \times 10^{-6} + 2.5 \times 10^{-6}$$

$$= 5.5 \times 10^{-6} \text{ s}^{-1},$$

$$\Lambda_{198}^{*} = nv\sigma_{198} = 2.5 \times 10^{-6} \text{ s}^{-1},$$

$$\Lambda_{199} = \lambda_{199} = 2.55 \times 10^{-6} \, \mathrm{s}^{-1}.$$

and

Using these values, we get

$$N_{199} = 7.85 \times 10^{7} \left(\frac{e^{-0.00107}}{5.5 \times 10^{-6} \times 2.55 \times 10^{-6}} + \frac{e^{-0.275}}{5.5 \times 10^{-6} \times 2.95 \times 10^{-6}} - \frac{e^{-0.275}}{2.55 \times 10^{-6} \times 2.95 \times 10^{-6}} \right)$$

= 7.55 \times 10^{7} (7.12 \times 10^{10} + 3.40 \times 10^{10} - 1.01 \times 10^{11}) = 3.2 \times 10^{17}.

The disintegration rate of ¹⁹⁹Au at the end of the irradiation is $\lambda_{199}N_{199} = 0.82 \times 10^{12} \text{ s}^{-1}$. For comparison we compute the disintegration rate of ¹⁹⁸Au in the sample [again from (5-12) for a two-membered chain]:

$$\lambda_{198}N_{198} = \lambda_{198}nv\sigma_{197}N_{197}^{0}\left(\frac{e^{-\Lambda_{197}t}}{\Lambda_{198}-\Lambda_{197}} + \frac{e^{-\Lambda_{198}t}}{\Lambda_{197}-\Lambda_{198}}\right)$$
$$= 9.06 \times 10^{7}\frac{0.999 - 0.552}{5.5 \times 10^{-6}} = 7.36 \times 10^{12} \,\mathrm{s}^{-1}.$$

Thus about 10 percent of the radioactive disintegrations in the sample occur in ¹⁹⁹Au.

Fission Does Not Always Meet the Initial Conditions

The GD Code

The general differential equations for radioactive decay and growth

$$\frac{dN_1}{dt} = a_{11}N_1 + r_1(t) + r_1(t) + r_2(t) \quad (1)$$

$$\frac{dN_2}{dt} = a_{21}N_1 + a_{22}N_2 + r_2(t) \quad (1)$$

$$\frac{dN_n}{dt} = a_{n1}N_1 + \dots + a_{nn}N_n + r_n(t)$$

where $N_i(t)$ is the number of atoms of nuclide i existing at time $t, a_{ij}, i \ge j$ are constants, and r_i 's are the rates of formation from sources other than by decay of isotopes i. A specialized form $r_i(t) = y_i f(t)$ is used in the Los Alamos code GD, so that the rates have time independent ratios to each other. The y_i 's are called fractional independent yields.

GD Code Continued

where A is the matrix of a_{ij} 's, N and Y are column vectors and f(t) is a scalar. Equation (2) has the solution

$$\mathbf{N}(t) = e^{(t-\tau)\mathbf{A}}\mathbf{N}(\tau) + \int_{\tau}^{t} e^{(t-s)\mathbf{A}}f(t)\mathbf{Y}ds$$
(3)

There is a non singular matrix **P** such that

$$\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{J} \tag{4}$$

is diagonal. Th GD code finds P. The solution is then

$$\mathbf{N}(t) = \mathbf{P} \operatorname{diag} \left[e^{a_{11}(t-\tau)}, \dots, e^{a_{nn}(t-\tau)} \right] \mathbf{P}^{-1} \mathbf{N}(\tau) + \mathbf{P} \left(\int_{\tau}^{t} \operatorname{diag} \left[e^{a_{11}(t-s)}, \dots, e^{a_{nn}(t-s)} \right] f(s) ds \right) \mathbf{P}^{-1} \mathbf{Y}$$
(5)

The GD Code Solution

Define $F_i(t)$ by

$$F_i(t-\tau) = \int_{\tau}^t e^{a_{ii}(t-s)} f(s) ds \tag{6}$$

then the solution is

$$\mathbf{N}(t) = \mathbf{P} \operatorname{diag} \left[e^{a_{11}(t-\tau)}, \dots, e^{a_{nn}(t-\tau)} \right] \mathbf{P}^{-1} \mathbf{N}(\tau) + \mathbf{P} \operatorname{diag} \left[F_1(t-\tau), \dots, F_n(t-\tau) \right] \mathbf{P}^{-1} \mathbf{Y}$$
(7)

The function f(s) is taken to be piecewise constant with f_j on time intervals U_j to W_j . With this specialization it follows that

$$F_i(t-\tau) = \frac{e^{a_{ii}t}}{-a_{ii}} \sum_j f_j \left(e^{-a_{ii}W_j} - e^{-a_{ii}U_j} \right).$$
(8)